Investigation of turbulence during the passage of a frontal system as estimated using Doppler lidar during COPS

Jenny Davis, Fay Davies, Guy Pearson and Chris. Collier*
Centre for Environmental Systems Research, School of Environment & Life Sciences, University of Salford, United Kingdom, etc: j.davis@salford.ac.uk

*School of Earth and Environment, The University of Leeds, Leeds LS2 9JT

Introduction

The Convective and Orographically-induced Precipitation Study (C.O.P.S) field that was conducted in the Black Forest region of Germany during the summer of 2007. Its aim was to advance the quality of forecasts of orographically-induced precipitation using extensive observations and modelling (COPS, 2007).

As part of this study, the Salford University UFAM Doppler Lidar, Radiometer and AWS were deployed in the COPS region, at the Aschern site (Supersite R) (Figure 1). All instruments were set to run continuously from the 13th June to the 16th August 2007.

Case Studies (20/07/07 and 31/07/07)

Turbulence, Skewness and Eddy Dissipation rate (ε)

20/07/07 - Fronts passing throughout the day, sporadic clouds and rain at noon. Gust front observed at around 1700 UTC.

Figures of variance and skewness through the day highlight the difference between the near-clear sky and frontal cases. Variance in the near-clear sky case study shows a well defined mixed layer with boundary layer top at approximately 1200m. The turbulence decreases rapidly after 1600 UTC. The skewness appears to follow a typical diurnal cycle (figure 2) driven by convection at the surface. In comparison with the 20/07/07 figure it is not so well behaved. The turbulence of 21/07/07 shows a decrease with height with the approach of the front (the individual spectra are shown in figure 4 for 1000 UTC). Shortly after, because of the frontal zone, it was not possible to fit a 2/3 gradient to the data. Spectra after the passage of the front at 1400 UTC show an increase in turbulence and are shown in figure 5.

Quantifying eddy dissipation rate

To quantify the turbulence in the front, a method proposed by Champagne et al., (1997) has been followed. Here, Taylor’s Hypothesis (Stull, 1988) is assumed and is used to calculate the wave number. The n is calculated from the lidar data using VAD analysis. The \bar{w} is the average mean wind speed over the height ranges as shown. The spectrum can be calculated from:

$$\sigma(n) = 0.68 c_s / \bar{w} n^2$$

where σ is the spectral energy of frequency n and \bar{w} is the mean wind speed. Here, the inertial subrange is characterized by a $-2/3$ gradient. Examples are shown below in figures 4 and 5.

Conclusions

- Lidar estimates of ε in the near-clear sky case behave as expected rising and falling with the diurnal cycle.
- ε has been shown with standard mast measurements to increase by an order of magnitude during frontal events (Piper and Lundquist, 2004).
- In this work we have shown that lidar estimates of ε are also increased during the passage of a frontal system.
- ε is shown to increase with height in this case possibly due to the structure of the front being modified within the Rhine Valley.

References

Chamecki, M. and Dias, N. L. (2004). 'Layer estimates of lidar can measure wind velocity and relative backscatter co-efficient. For reference, the Hornisgrinde is in the background.

Figure 2 - The COPS study area and Supersite R, Aschern (see map for location).

Frontal Turbulence

Very little is known about the nature of turbulence in the transition zone of a synoptic-scale front, especially at the dissipative scales (Piper and Lundquist, 2004). Lacking this knowledge, accurate models of turbulent mixing following the frontal passage are compromised. Chamecki and Dias (2004) and others have pointed out that to understand the dynamics of turbulent flows it is essential to know the energy dissipation rate. There is a link between the properties of clouds and the properties of the tke budget (Collier and Davies, in press).

Using data from Doppler lidar and AWS, energy dissipation is investigated during a frontal passage and some conclusions have been suggested.