Observations of Shallow Convection Over the Black Forest During COPS

Stephen Mobbs
National Centre for Atmospheric Science, UK

Acknowledgements to: The Facility for Airborne Atmospheric Measurements (FAAM) and the staff and crew of the FAAM BAe-146 aircraft; Alan Roberts, Alan Foster, Ian Ramsay-Rae, Maureen Smith, Victoria Smith
COPS: UK objectives

- To understand the processes leading to the initiation of deep convection over steep and complex terrain
- To understand the pathways by which air is drawn into growing convective cells, both over the mountain range and through the valleys
- To quantify the fluxes of boundary layer aerosols into convective cells over the mountains
- To understand the role of aerosols in the cloud microphysical processes over the mountains
The main valleys studied during COPS.
Flight Planning
15th August 2007
17th August 2007

Cumulus layer
Conclusions

- Boundary-layer Observations mainly concerned weakly stable cumulus topped conditions.
- σ_w and heat flux tend to decrease towards the top of the boundary layer where turbulence consists of more isolated large eddies.
- At larger horizontal scales (> few km) turbulence has the characteristics of gravity waves.
- Disturbances are stronger over the mountains than over the plain but only at longer wavelengths (> few km).
- Greater evidence of gravity waves over the mountains than over the plain.