How to use the Synergy of COPS Remote Sensing Data to Analyse Convection Initiation Processes in Complex Terrain?

Andreas Behrendt, Sandip Pal, Marcus Radlach, Fumiko Aoshima, Volker Wulfmeyer, Martin Hagen, Galina Dick, Jan Handwerker, Ronny Engelmann Hermann Mannstein, Matthias Grzeschik, Hans-Stefan Bauer

IOP 9c

• Composite plots, CI sites, BL Hornisgrinde,
• Highlights for COPS Overview paper

IOP 8b

• CI locations of COPS, cloud top cooling rate, lid

IOP 13a

• Saharan dust, outflow boundary, DIAL data versus D-PHASE models

IOP 3a

• Temperature variance profile
IOP 9c, 20 July 2007
IOP 9c: Flooding in Bavaria (Erlangen, Forchheim)

„.....up to 75 l/m²“
COPS Remote Sensing Instruments

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|----|---|---|---|---|---|---|---|---|---|----|
| IO | | | | | | | | | | 5a | 5b | 6 | 7a | 7b | 8a | 8c | 9a | 9b | 9c | 10 | 11a| 11b| 12 |
| No. of CI event | 2 | 8 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 6 | 5 | 0 | 0 | 1 | | | | | | | | | | | | |
| Airborne | |
| DLR DIAL | | | x | |
| Leandre2 | |
| Mobile | |
| DOW1 | |
| DOW2 | |
| SuSiH | |
| WV DIAL | | | | | | x | |
| RRL | |
| Windtracer | |
| CloudRadar | |
| CNR MWR | |
| SuSiR | |
| BASIL | |
| Doppler Lidar | |
| CloudRadar | |
| TARA | |
| MWR | |
| SuSiM | |
| BERTHA | |
| WILI | |
| MPL | |
| CloudRadar | |
| HATPRO | |
| SuSiV | |
| TRESS | |
| CNRS RL | |
| SuSiS | |
| Ceilometer | |
| WTR | |
| MICCY | |
| POLDIRAD | |

24 instruments (in addition to AMF, op. radars, GPS, MRRs, MSG RSS)!

7th COPS workshop, Strasbourg, 27 – 29 October 2008
IOP 9c: Precipitation Sum, Karlsruhe Radar

21.07.2007
00:00:21

10 – 22 UTC

7th COPS Workshop, Strasbourg, 27 – 29 October 2008
IOP 9c: MSG Multi-Channel Composite & DWD Radar

900 UTC

930 UTC

1000 UTC

1030 UTC

1100 UTC

1130 UTC

10:00

10:30

11:00

11:30

(mm/h)

100.0

77.8

60.5

46.9

36.3

27.9

21.4

16.4

12.4

9.3

6.8

4.9

3.4

2.3

1.4

0.7

0.1

7th COPS Workshop, Strasbourg, 27 – 29 October 2008
IOP 9c: WiLi at Susi M

Updraft 9 m/s Downdraft 5m/s
IOP 9c: POLDIRAD & Karlsruhe Radar, 1000 UTC
IOP 9c: UHOH RRL & DIAL

Gradient of Potential Temperature, [K/100m]

Particle Backscatter coefficient, [1/m² km]

Water Vapor Mixing Ratio, [g/kg]

Altitude, m AGL

Time, UTC
IOP 8b: MSG Rapid Scan Data

10.8-μm Channel

7th COPS Workshop, Strasbourg, 27 – 29 October 2008
94 CI events on 30 analysed IOP days.

IOP 8b: MSG Rapid Scan Data

Minimum Bt10.8 (K)

Maximum Radar Reflectivity (dBZ)

Time (UTC)

1430 UTC

1437 UTC

1448 UTC

-4.0 K/minute

7th COPS Workshop, Strasbourg, 27 – 29 October 2008
IOP 8b: UHOH RRL

Δz = 3.75 m
Δt = 13 s
IOP 8b: UHOH RRL

Δz = 300 m
Δt = 3 min

Strengthening lid, perturbed in height
IOP 13a/b, 1/2 August 2007
Saharan dust

Outflow boundary
IOP 13a/b: UHOH DIAL
IOP 13 a/b: Comparison of UHOH DIAL and Mesoscale Models

7th COPS Workshop, Strasbourg, 27 – 29 October 2008
IOP 3a, 14 June (weakly forced convection): UHOH RRL

$\Delta t = 10 \text{ s}$
$\Delta r = 3.75 \text{ m}$

$\Delta t = 10 \text{ s}$
$\Delta r = 37.5 \text{ m}$
(75 m gl. av.)
IOP 9c
- Composite plots, CI sites, WiLi, BL Hornisgrinde: DIAL & RRL,
- Highlights for overview paper of COPS field phase

IOP 3a
- Temperature variance profile

IOP 8b
- CI locations of COPS, cloud top cooling rate

IOP 13a
- DIAL data versus D-PHASE models

Outlook
- Synergetic lidar data products: Latent & sensible heat fluxes, buoyancy, ...

Composite plots (MSG, Radar, GPS IWV): Poster **C4**, Fumiko Aoshima et al.
UHOH DIAL: Poster **C6**, Sandip Pal et al.
UHOH RRL: Poster **C10**, Marcus Radlach et al.