Analysis of the regional water balance for COPS IOPs using COSMO model simulations

R. Schmitt, Ch. Kottmeier, G. Schädler
Institute for Meteorology and Climate Research, University of Karlsruhe / Forschungszentrum Karlsruhe

Introduction

The atmospheric water vapour content is controlled by the processes precipitation, evapotranspiration and advection. These components, their relations and contributions to the regional water budget are insufficiently known. Routine observation networks are expensive to run, therefore observations are quite rare. Assumed that the distribution of the balance components in nature and in the model are similar, water balances can be estimated by combining observations and model simulations, especially based on potentials supplied by GPS measurements. Besides the quantification of the components the influence of specific regional characteristics (topography, land use) and time-dependent factors on a synoptical scale (weather situation, air mass features) to the regional water budget can be extracted.

Experiments like COPS provide an ideal opportunity to analyse the atmospheric water budget for different episodes. Furthermore balancing over longer time periods is needed to study the variability of the water budget components on a climatological scale. In the following model based atmospheric water balances for IOP 8b (July 15, 2007) are presented.

Methods

The presented water balances are related to the water vapour budget. A model of the atmospheric moisture fluxes is shown in figure 1. On this basis it can be established that the temporal change of the water vapour content in a volume is caused by advective and turbulent fluxes as well as phase transformations. Vertical turbulent fluxes on the land surface can be set equal to evapotranspiration.

The atmospheric water balances are computed with the COSMO 4.2 model after the implementation of some modifications (Grams, 2008). This model based moisture budget implies that the temporal change of the specific humidity is set together by different physical and numerical processes which are listed in equation 1.

\[\Delta q = \text{HADV} + \text{VADV} + \text{MTD} + \text{MMC} + \text{SQ} + \text{MCM} + \text{MLB} + \text{MRD} \]

Eq. 1: Model based balance equation. q: specific moisture; Tendencies due to: HADV = horizontal advection, VADV = vertical advection, MTD = turbulent mixing, MMC = subgrid scale moist convection, SQ = cloud evaporation/condensation, MCM = computational mixing, MLB = lateral boundary relaxation, MRD = Rayleigh damping scheme (Doms and Schättler, 2002).

To establish the water budget balance of a region a control volume has to be set up. The location and the dimension of the control volume can be chosen arbitrarily within the simulation area. Figure 2 illustrates the simulation area. Marked in blue is the region of the water budget examinations. The height of the control volume is up to 5 km. The features of the model set-up are presented in table 1.

<table>
<thead>
<tr>
<th>Spatial resolution</th>
<th>7 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal dimension of the simulation area</td>
<td>124 x 140 gridpoints</td>
</tr>
<tr>
<td>Number of model layers</td>
<td>40</td>
</tr>
<tr>
<td>Considered period</td>
<td>15.07.07 (0 UTC) to 17.07.07 (0 UTC)</td>
</tr>
<tr>
<td>Time scheme</td>
<td>Leapfrog</td>
</tr>
</tbody>
</table>

Tab. 1: Model set-up.

Conclusions and Outlook

The model based balancing for an episode with a low number of convection cells and precipitation events reaches an almost closed balance for the atmospheric water vapour budget. The dominating contributions to the moisture change are advective and diffusive processes. For further testing of this balancing method model simulations for episodes with phase transformations and computations for longer periods are necessary. In a next step the model results are to be compared with measurements. In particular the comparison of the simulated water vapour content with GPS measurements is of significance.

References:

Acknowledgement: This project is a contribution to the Helmholtz Research Network EOS and is a cooperation between the University of Karlsruhe and GFZ Potsdam.

Contact: romi.schmitter@inmf.kit.de