Linkage between sediment induced spatial variability in soil characteristics and rice performance in paddy fields in mountainous regions of Vietnam

P. Schmittera, M. Hertela, G. Dercona, T. Hilgera, T. Thi Le Hab, N. Huu Thanhb, T. Duc Vienc, N. Van Dungc, G. Cadischa

a University of Hohenheim, Institute of Plant Production and Agroecology in the Tropics and Subtropics, 70593, Stuttgart, Germany
b Agricultural University of Hanoi, Department of Soil Science, Vietnam
c The Center for Agricultural Research and Ecological Studies (CARES), Vietnam
Population pressure and economical changes

Deforestation

Land use intensification: maize + cassava

Erosion + runoff

Lowland rice

=> Impact on soil fertility in upland and lowland
Hypothesis:

- sediment concentration = f(rainfall intensity, duration; ground cover; water flow; travel distance, ...)
 ⇒ unequal distribution among paddy fields

- sedimentation = source for plant available nutrients
 ⇒ spatial variability of crop performance due to unequal distribution of sediments?
The Uplands Program

Study area

Son La Province

Coordinates: 20°37’N; 106°4’E
⇒ tropical monsoon (1114mm, 24°C)
The Uplands Program

Field setup

- 4 cascades
- *O. sativa*: sticky rice var. Nep 87
- fertilizer vs. no fertilizer
- soil samples: topsoil (0-5cm)
- crop performance measured at 7 points in the field

![Diagram of field setup with irrigation channel, fertilizer, and no fertilizer areas.]
Spatial variability of soil characteristics

The Uplands Program

Organic carbon content (%)

Distance from the irrigation channel (m)

Distance from the inlet of a field (m)

Irrigation channel

Outlet

Inlet
The Uplands Program

Spatial variability of crop performance

Maximum Tillering

Maximum Tillering - Panicle initiation

Flowering

Harvest
Spatial variability of crop performance

The Uplands Program
Spatial variability of crop performance

The Uplands Program

Inlet

Outlet

Irrigation channel

Distance from the irrigation channel (m)

Distance from the inlet of a field (m)

LAI - Maximum tillering/panicle initiation stage

LAI - value

0 1 2 3 4 5 6

Graph showing spatial variability of crop performance with LAI values.
Spatial variability of crop performance

- Distance from the inlet of a field (m)
- Distance from the irrigation channel (m)

Legend:
- LAI - value
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
Spatial variability of grain yield (kg/m²)

-Irrigation channel

-Spatial variability of grain yield (kg/m²) from the irrigation channel (m) and distance from the inlet of a field (m).

-Grain yield (kg/m²) - non fertilized

-LAI value - flowering
Impact of distance to the irrigation channel on:

- Grain yield (kg/m²) shows the same trend
- Specific surface area = f(clay, silt, sand)

Increase of SSA (m²/g) towards the middle of the cascade
Grain yield (kg/m²) shows the same trend
Specific surface area (SSA) = soil fertility indicator?

⇒ Distribution of mineral soil fraction influences soil organic carbon and total nitrogen content.
The Uplands Program

Grain yield (kg/m²) vs. Relative grain yield (%)

![Diagram showing grain yield and relative grain yield with a color gradient representing different values. The diagram includes labels for distance from the inlet of a field (m) and distance from the irrigation channel (m).]
Conclusion

• mineral soil fraction and grain yield = f(distance)
• C_{org} and TN = f(SSA)
⇒ mineral soil fraction is partially influencing spatial variability of grain yield
• findings can be used for point specific fertilizer recommendations
⇒ reduces investment costs
Thank you for your attention!