High resolution GPS tomography during COPS: Overview and perspectives

C. Champollion (1), F. Masson (2), D. Fiole (2), P. Gegout (2), K. Boniface (1), G. Dick (3) and C. Flamant (4)

(1) Geosciences Montpellier, Universite Montpellier II, CNRS, Montpellier
(2) EOST, Institut de Physique du Globe de Strasbourg, Strasbourg
(3) GeoForschungsZentrum, Postdam
(4) IPSL, Service d'Aeronomie, Paris
Why GPS water vapour measurements?

1- Additional all weather capable dataset with good temporal sampling for CI case studies (Samiro Khodayar Poster).

2- Impact of GPS data assimilation in numerical modeling: need to determine the best GPS network configuration for future operational QPF (Olivier Caumont presentation).

3- Synergy between the GPS tomography and the profiling instruments (RS, LIDAR, IASI)
The COPS GPS Network

Things done:
- 25 GPS (20 Fr. et 5 All.) installed during COPS
- ~80 GPS on a large COPS area
- A regional network (50 km)
- A E-W dense profil (10 km)
- 3 months of continuous measurements
- About 15 people participated to the field experiment
- All the ZTD data processed and available
- IWV, SWV and tomography available: please ask for
Bias GPS / Radiometer: 0.56 kg/m² at supersite M (AMF)
RMSE GPS / Radiometer: 1.14 kg/m² at supersite M (AMF)
Bias GPS / RS: 1.35 kg/m² at supersite V (Poster of P. Bosser)
RMSE GPS / RS: 1.24 kg/m² at supersite V (Poster of P. Bosser)
In fact, additional \textit{vertically resolved} measurements needed (RS)

\[\Delta L_{ij} \]

\[\rho_i \]

\[SWV_j \]

\[\text{Satellites GPS} \]

\[\text{Stations GPS} \]

\[\text{Gradient humide} \]

\[\text{Integrated Water Vapor} \]

\[\text{Slant Integrated Water Vapor} \]

\[\text{mI} \]

\[\text{Résidus} \]

\[\text{Récepteur GPS} \]

\[\text{Satellite GPS} \]

-> Tomography is the combination of all water vapor measurements to retrieve the 4D water vapor field
Previous tomography studies

First attempt of GPS tomography during ESCOMPTE in south France (Marseille):
- very dense GPS network (5 km) but small extend (25km²) and no CI case

Second attempt during IHOP:
- Very good CI cases, mesoscale GPS network but sparse (40 km)
Champollion et al., QJRMS, 2008, accepted.

And COPS ?
- Both mesoscale (40 km) and local (10km) GPS Network
- Good CI cases
- Ground-based and airborne LIDAR data for validation

The main questions:
- What kind of water vapour heterogeneities GPS tomography can retrieve ?
- As radiosoundings measurements must be used in the GPS tomography, When and Where?
Tomography setting

- 3D water vapour field retrieved each hour.
- Vertical resolution of 250 to 500 m in the lowest levels
- Horizontal resolution of 10 km between the supersites (EW profile), 50 km in the whole COPS domain
Horizontal and vertical water vapour heterogeneities: Mountain slopes winds (1)

Airborne LIDAR measurements over the Vosges mountains (15/07:1300UTC)
Horizontal and vertical water vapour heterogeneities: Mountain slopes winds (2)

Very similar pattern in tomography and lidar: both east-west and vertical water vapour variations

![Airborne LIDAR](image1)

![Tomography](image2)

\[\text{Rapport de mélange (g/kg)} B2007703151300. 2\]

\[\text{vertical lat: 48.6}\]

\[\text{g/m}^3\]
Horizontal and vertical water vapour heterogeneities: Mountain slopes winds (3)

At 0600 UTC the 15 June,
Start of slopes winds in the Vosges

At 1300 UTC the 15 June,
- Slopes winds still more active in the Vosges
- No more water vapour in the Rhine Valley
Vertical heterogeneities only: dry layer (lids)

Airborne LIDAR measurements over the Vosges mountains and the Black forest
(26/07:0800UTC)
Vertical heterogeneities only: dry layer (lids)

! Different units!

similar pattern in tomography and lidar:
but only one dry layer retrieved by the tomography
Conclusion and future work

Processing
- Process the all COPS period (three months)

Quantitative Validation
- Extensive validation of the GPS data processing (all radiometers and RS available, GFZ processing)
- Statistical GPS tomography validation: Ground-based LIDAR
- Cases validation: airborne LIDAR

Cases studies
- Mountain slopes dynamic -> influence on the water vapour field and CI (both Vosges Mountain and Black Forest)
- Dry layer dynamic during COPS: impact on CI
- Convergence lines -> influence on the water vapour field and CI

Methodology studies
- Best GPS / RS network for tomography and assimilation -> towards HYMEX SOP
Thanks to:

- GPS INSU division
- Secretaries of SA and IPGS
- Field participants (Diana, Sophie, Myrto, Phillipe, Joel, Pascal, Cécile, Caroline, Bernard, ...).
- GPS data providers: Orphéon, RGP, GFZ, Engref Nancy, SwissTopo
- Meteorological surface data providers: Météo-France, SwissMeteo, DWD
- GM and GA for free GPS rent, IPGS for technical help.