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Precipitation observed at ground is the result of a

Iong chain of complex processes
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Precipitation observed at ground is the result of a
long chain of complex processes
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Precipitation processes

High importance of precipitation processes.
Requires input from:

* Initiation of convection (WG 1)
» Aerosol and cloud microphysics (WG 2)

provide the environment favourable for the generation of precipitation.

Output (real-time) for data assimilation (WG 4)

Generally, forecast quality is measured only through the final product:

> precipitation observed at ground
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State of the art: Life cycle of convective precipitation

The microphysics of precipitation and the life cycle of convective precipitation
are fairly well understood.

Single cell (*2- 1 h) Multi cell (hours)
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The life cycle of deep convection is controlled by the instability of the air
and the wind shear in the lower troposphere.

Holler, 1994
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Mesoscale convective systems

Deep
Convective
Cells
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Mesoscale convective systems
Trajectories of MCS in Central Europe

Hagen et al., 2000
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Instruments

Polarimetric Doppler weather radar

e operational Doppler radars (high resolution volume, networking)
e additional polarimetric radars (fixed, mobile, airborne)
e cloud radars (fixed, mobile, airborne)

Disdrometer

e ground based
e vertical pointing Doppler radars

Rain gauge
e operational networks
e additional gauges

Microwave radiometers

Lightning detection network

e operational networks
¢ high resolution network with vertical location capabilities

Satellite observations (MSG, ...)
Instrument synergy (e.g. radar — cloud radar; radar — lidar; radar — mwr; ...)
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Operational Doppler radars

DWD
IMK Karlsruhe

Meteo Swiss
Meteo France

complete coverage
with 125 km range :
orange: dual-Doppler area|:

all Dopplerized
none is polarimetric
(except Montancy, '06)

added after discussion:
Nancy will not be polarimetric
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Rain rate estimation (DSD) and Hydrometeor classification by
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polarimetric radar *
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Dynamic features by
multiple Doppler
observations
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COPS Hypotheses

=

6.

i DLR

Knowledge of large-scale conditions is a prerequisite for improving QPF.
Understanding and modelling of the orographic controls of convection
such as embedded convection in convergence lines, secondary
circulations is essential.

1+2: Requires 4-D observations

Initiation of convection depends mainly on the structure of the humidity
field in the PBL.

<> QOrographic forcing has a strong impact

Continental and maritime aerosol type clouds develop differently over
mountainous terrain, but ice formation and precipitation from convective
clouds do not depend on measurable aerosol properties.

How to validate this ?

Instrumentation synergy can be designed in such a way that critical
parameterizations improved.

New microphysical parameterization is required.

Real-time data assimilation is routinely possible and improves QPF.
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Open questions

Orography can trigger the development of cells, however, it is open whether
convection is suppressed in the subsiding flow in the lee of hills.

The life cycle of single cells can be modulated by orography, but it is open
whether orography like Vosges Mountains or Black Forest can have a
significant influence on the formation and propagation of multi- or super-
cells or even mesoscale convective systems.

How significant is this influence if the cells have been already formed before
they interact with orography?

Can embedded convection be triggered by topography. Formerly stably

stratified precipitation may be destabilized by the forced uplift through
mountains.
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Role of WG “Precipitation life cycle and processes”

Define measurement strategy
(for precipitation related instruments).

Coordinate observations,
provide data (real-time ?) to WG 4.

Develop new instrument synergy to evaluate the transition from
non-precipitating to precipitating cloud systems.

Provide observations to investigate in new microphysical parameterization
schemes.
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